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A spectral element method that combines the generality of the finite element method with 
the accuracy of spectral techniques is proposed for the numerical solution of the incom- 
pressible Navier-Stokes equations. In the spectral element discretization, the computational 
domain is broken into a series of elements, and the velocity in each element is represented as a 
high-order Lagrangian interpolant through Chebyshev collocation points. The hyperbolic 
piece of the governing equations is then treated with an explicit collocation scheme, while the 
pressure and viscous contributions are treated implicitly with a projection operator derived 
from a variational principle. The implementation of the technique is demonstrated on a one- 
dimensional inflow-outflow advection-diffusion equation, and the method is then applied to 
laminar two-dimensional (separated) flow in a channel expansion. Comparisons are made 
with experiment and previous numerical work. 

INTRODUCTION 

Much attention has been devoted in the past several decades to the development of 
efficient, accurate, and stable numerical schemes for the solution of the (incom- 
pressible) Navier-Stokes equations, 

Three classes of solution techniques have emerged: the finite difference techniques, 
the finite element methods, and the spectral techniques. Although the finite element 
and spectral methods are in fact related, practitioners of the two methods have not, in 
general, exploited this similarity. In this paper we present a hybrid finite 
element-spectral method that combines the generality of the former with the accuracy 
of the latter in a more flexible ratio than is found in either technique alone. 

Spectral methods [l] involve the expansion of the solution to a differential 
equation in a high-order orthogonal expansion, the coeffkients of which are deter- 
mined by a weighted-residual projection technique. The schemes are “infinite’‘-order 
accurate if the expansion functions are properly chosen. 
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The finite element procedure is, in the most general sense, a weighted-residual 
technique applied to a series of expansions, each with support over only a small 
region of space (an “element”). When the weighted-residual technique is directly 
derived from an associated variational principle, continuity of natural boundary 
conditions is implicitly satisfied at element boundaries as part of the convergence 
process. 

The similarity between finite element and spectral methods is, in some cases, exact. 
For instance, in the case of the Laplacian operator, the one-element variational finite 
element approximation (in fact, a Raleigh-Ritz procedure) is exactly equivalent in the 
interior of the domain to a Galerkin spectral approximation if the basis functions are 
the same. The main attraction of spectral techniques is accuracy; general, complex 
flow problems are typically extremely difficult to implement and solve using spectral 
methods. The main attraction of the finite element method is generality; elements are 
typically chosen to be at most quadratic [2-4], and consequently, great accuracy is 
only achieved with difficulty. 

Global domain-decomposition techniques have been introduced previously in 
computational fluid dynamics, both in terms of low-order finite element expansions 
(the “domain decomposition” technique [5]) and spectral methods (the “multi- 
domain spectral method” [6]). A “global element method” has also been introduced 
for elliptic equations [7-lo], although it has not yet been implemented for the 
Navier-Stokes equations. The difference between these techniques and the current 
spectral element method is primarily in the treatment of the continuity conditions at 
element boundaries, as will be discussed in greater detail in the context of a one- 
dimensional Poisson equation in Subsection 1.3. 

There are two parts to this paper. In Section 1, we solve a one-dimensional inflow- 
outflow advection-diffusion equation; this model problem accurately mimics the 
complicated Navier-Stokes equation in that a time step can be separated into an 
explicit hyperbolic piece and an implicit parabolic piece, yet it is sufficiently simple 
to allow a clear demonstration of the attributes and implementation of the spectral 
element technique. Furthermore, the inflow-outflow geometry is an example of an 
extremely simple situation where spectral techniques already provide poor resolution 
properties. In Subsection 1 .l, we indicate the spatial discretization basic to the 
spectral element method. In Subsection 1.2, the technique is applied to a first-order 
wave equation. In Subsection 1.3, the method is applied to a Poisson equation, and 
the results are compared with those obtained using either a full spectral technique or 
a quadratic finite element procedure. In Subsection 1.4, we assemble the results of the 
previous sections to solve the one-dimensional inflow-outflow advection-diffusion 
equation. 

Although the one-dimensional advection-diffusion equation is illustrative, the true 
test of the method must be in a multi-dimensional, nonlinear, “complex” flow 
situation. Therefore, in Section 2 of this paper, we simulate laminar flow in a one- 
sided channel expansion. In Subsection 2.1 the back-step geometry is described, and 
the modifications required to extend the methods of Section 1 to include pressure, 
nonlinear, and multi-dimensional effects are discussed. In Subsection 2.2 we present 
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the results of our simulations and comparisons are made with experiment and 
previous numerical work. Extensions and improvements to the spectral element 
method which will allow it to be used in greater generality than currently poossible 
are briefly discussed. 

1. THE INFLOW-OUTFLOW ADVECTION-DIFFUSION EQUATION 

1.1. Spatial Discretization 

Our model problem is the one-dimensional advectiondiffusion equation, 

u, + u, = vuxx, --cr,<x<oo. (2) 

Using a second-order Adams-Bashforth explicit scheme for the wave operator and 
the Crank-Nicolson 
time step n is 

method for the diffusion term, the time-discretized form of (2) at 

An+ 1 u - 2.4” 

At 
= -; (24,)” + + (t&y, (34 

u n+1 _ $I+1 

At = 3 {k,)“+ l + (u,J”~* (3b) 

We remark briefly here on the similarity between the above model problem and the 
Navier-Stokes equations. If the nonlinear (advective) terms are treated explicitly, the 
full solution of the Navier-Stokes equations at each time step involves a wave-like 
equation similar to (3a), a Poisson equation for the pressure, and a Helmholtz 
equation (for the viscous terms) similar to (3b). Although the pressure and the 
viscous calculations may be coupled (depending on the time-stepping scheme used for 
the Stokes problem, see Section 2), the individual equations to be solved in a given 
time step are all represented in Eq. (3). 

We now discuss the spatial discretization of (2) by the spectral element method. 
The domain is broken up into M “elements,” the ith element being of length L’ and 
defined on the interval [a’, b’]. Within the ith element we represent the function u(x) 
as the Lagrangian interpolant through the Nt + 1 points 

xj = cos x, 
N: 

j = 0, 1, 2 ,..., N’ x7 

where the overbar indicates the local element coordinate system given by 

2=-$(x-ai)- 1. WI 
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The interpolant of u(x) in the ith element is written as 

where the hj are identically zero outside the ith element, and are Lagrangian inter- 
polants satisfying 

(5b) 

within the element. (Here S,,, is the Kronecker-delta symbol.) Given the special 
collocation points (4a), the interpolation functions h#‘) can be expressed as 

(5c) 

where the T, are the Chebyshev polynomials defined as 

T,(cos 8) = cos nbJ, (64 

and 

Fk= 1, k#O,N:, 

= 2, k=O,N;. 
(6b) 

The purpose for choosing the particular collocation points (4a) for the Lagrangian 
interpolant ui is that 

IIu - uilJ g [$) k, Ni-+ co, for all k 
x 

(7) 

(for u E C” and any suitable norm), as can be easily demonstrated by Sturm- 
Liouville theory or the properties of cosine representation. (Here Cp is the space of 
functions that are continuous and have continuous derivatives up to order p.) Other 
choices of collocation points have the property (7), however, (4a) seems a reasonable 
choice given the good approximation properties of Chebyshev polynomials as well as 
the existence of a fast transform. 

Using the spatial discretization described, we now indicate the projection operators 
used to form the right-hand sides of (3). Rather than dealing directly with the 
advectiondiffusion equation, we first look at even simpler sub-problems, namely a 
wave equation and a Poisson equation analagous to (3a) and (3b), respectively. 

1.2. The Wave Equation 

We look at the simple one-dimensional wave equation 

u, + u, = 0, -1(x< 1, (84 
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u(x = -1, t) = sin 7rt, 

u(x, t = 0) = 0, 
(8b) 

(8~) 

which has the solution 

u(x, t) = sin 7r(t -x - l), x<t- 1, 

= 0, x>t-1. 
(9) 

Note for t < 2, uX is discontinuous. A problem similar to this is studied in detail in 
[l] for a “one-element” spectral method, and it is indicated that the Chebyshev 
representation allows for patching of domains with no further conditions than 
physically required. We demonstrate how this is done using the (physical-space) 
representation described in Subsection 1.1 and a collocation projection operator (the 
only viable projection operator for the nonlinear terms in the Navier-Stokes 
equations if high-order methods are used). 

Discretizing in time, (8) becomes at time P’, 

u n+1 
- un 

At 
= -; (u,)” t + (uJ-‘, (104 

zP+‘(x = -1) = sin 7rt”+‘. (lob) 

The domain is broken into two elements, the first covering [-1, O], the second [0, 11. 
In each element the derivatives are calculated using collocation [ 11, either using a 
transform-recursion technique or by direct matrix multiplication. The only subtlety 
involves updating u at the domain and element boundaries. With respect to the 
former, the correct treatment is to simply set the node at x = -1 according to (lob), 
with no boundary condition required at outflow (x = 1). As to element boundaries, a 
family of schemes exists. In particular, derivatives at the element interface (x = 0) 
can be evaluated as weighted averages 

D,=a-Do- ta+D,+, a-ta+=l, (11) 

where Do-, D,, denote the derivatives at x = 0 evaluated in the [-1, 0] and [0, 1 ] 
elements, respectively. 

Clearly the best choice in (11) consistent with the characteristics of (8) is a- = 1, 
a + = 0. This choice corresponds to “spectral upwinding,” and is certainly stable. In 
Fig. 1, we plot the La-error in U(X) (using “upwinding”) at a time t = 5.0 as a 
function of the total number of points in the domain, Nt = 2N: + 1 (Nl= Nz). As 
expected, the errors decrease at least exponentially. The choice of a- = a + = f 
(which is what the formal collocation procedure would give) has obvious advantages 
in terms of ease of implementation. Numerical tests indicate that this combination 
does not, in fact, significantly affect the stability of the scheme. 

We have demonstrated the ease with which Chebyshev collocation extends to 
multi-element problems; there is no need for patching beyond that required by the 
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0 

FIG. 1. A plot of the (spatial) error in the numerical solution to (8) obtained using the spectral 
element method on a two-element (I-1,0], [0, I]) grid. Here E, = ]]u,,,,,,,~~~, - u,,,,~ /loD, and N, is the 
total numer of grid points (nodes) used. 

equation. For first-order hyperbolic systems such as (8) (and, in fact, the advective 
piece of the Navier-Stokes equations) only continuity of the function is required, and 
that is easily satisfied in the physical-space representation of the spectral element 
method. Empirical investigation has indicated that nonuniform spacing of points 
between elements (e.g., N: # Ni) has no significant effect on accuracy, as pointed out 
in [l]. 

1.3. The Helmholtz Equation 

We present here the solution of 

24 xx-A2u=f, -1 <x< 1, 

U(-l)=u(l)=O, 

(124 

(12b) 

using the spectral element discretization. It is here that the influence of both spectral 
methods and finite element techniques becomes apparent. 

To construct the spectral element approximation we need the variational principle 
equivalent to the solution of (12), namely, maximization of the functional 

(13) 

where I’ is the contribution to I from the ith element. In particular, we use the 
Lagrangian interpolant u’(x) as a trial function in (13), and require that the variation 
of I’ with respect to the nodal values ZJ~ vanish. The elemental equations are then 
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(we use the repeated-index summation convention for 

Cj,=AI -A2Bi Jk Jk 

and Afk and Bjk follow from (5), (6), and (13), 

subscripts only), where 

(14b) 

(15b) 

Here 

1 
a nm = 1 1 

dTn dTm 
w-1 dx a!x I 

dx, 

= 0, n+modd, (164 

= y [J,wnv*, - J,~n+mv*,l~ n + m even, 

where 

Jk=-4 i 1, 
p=, 2P- 1 

k> 1, 
(16b) 

= 0, k = 0. 

Also, 

L, =(’ 1TnTml du, 
1 

= 0, n+modd, (17) 

1 1 
= l-(n+m)‘+ l-@-m)*’ 

n + m even. 

To construct the system matrix from the element matrices the “direct stiffness” 
method [4] is used, which recognizes that the variation in I due to an element 
boundary node “displacement” is simply the sum of its contributions from each 
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element it bounds. Denoting direct stiffness summation by C’, the spectral element 
approximation to (12) can then be written as 

where 

BP,= 5'Bjk, 
i=l i=l 

(18b) 

and u,, f, are defined in terms of the “global” node numbering. Note that no 
patching is required across element boundaries to ensure continuity of u,, as the 
projection (18) has been derived from the variational principle (13). The (essential) 
Dirichlet boundary conditions (12b) are imposed by matrix condensation; the rows 
and columns corresponding to boundary points are eliminated from the system 
matrix. Nonzero Neumann boundary conditions would be imposed by modifying the 
functional (13), while zero-derivative conditions are naturally imposed. 

We discuss here the differences between the spectral element, multi-domain [6], 
and global element [7-lo] procedures for solving elliptic problems. All use 
Chebyshev expansions local to a given element. As indicated above, the spectral 
element method uses a variational formulation with trial functions that are Co across 
element boundaries, with flux continuity at element interfaces satisfied as part of the 
convergence process. The multi-domain spectral method [6] does not use a 
variational formulation or Co basis functions and, as a result, the function and 
derivative continuity conditions must be separately imposed. The global element 
implementation is similar to the spectral element procedure in that a variational 
procedure is used. However, in the global element method, the elements are non- 
conforming (i.e., the trial functions are not Co across element boundaries), and a 
modified functional is used to ensure approximate continuity of the derivative and 
function. It is our contention that techniques that automatically and self-consistently 
generate the element continuity conditions (e.g., the global element and spectral 
element methods) offer significant advantages in terms of ease of implementation over 
other approaches. 

We demonstrate the accuracy of the spectral element method for (12) choosing 
1’ = 0, f = COS(ZC + 7r/4). In Fig. 2 we plot the L,-error in the solution as a function 
of ZVt using a one-element spectral method, a two-element spectral element method, 
and a quadratic finite element method. The spectral method is, of course, the most 
accurate. However, at an error of IO-‘, the two-element spectral element method 
requires only about 5 more points than the fully spectral approximation, whereas with 
the quadratic finite element approximation this accuracy is practically unattainable. 
If f were such that the solution to (12) varied significantly near x = 0 and was 
smooth near the boundaries, the spectral element method would, in fact, be superior 
to the one-element spectral representation [lo]. 

Thus it is seen that the spectral element method can achieve the accuracy of a 
global spectral expansion, however not at the expense of “uncontrollable” resolution. 

501/54/3-0 
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FIG. 2. Two plots of the &-error in the numerical solution to the Poisson equation (12) (with 
A’ = 0, f = cos(nr + n/4)) obtained using a one-element spectral method (El), a two-element spectral 
element method (+), and a quadratic finite element method (0). As expected, the spectral and spectral 
element methods converge exponentially, while the finite element method converges algebraically. 

Furthermore, the matrices in (18) are negative-definite symmetric and banded (the 
bandwidth determined by the IV;), and the problem of patching is nonexistent. 

1.4. The Advection-Dzflision Equation 

We now return to the model problem of Subsection 1.1. The inflow-outflow 
advection+%ffusion equation of interest is 

Ut+Ux=&x, --oo<x<co, WW 

with initial condition 
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The solution to (19) (requiring u + 0 as Ix/+ co) is 

‘tx9 ‘I= (1 + 8,,[)1/2 ’ exp i-:(~~v~!. 

The time discretization is as given in (3). To eliminate the infinite domain we must 
truncate at finite x and impose proper inflow-outflow boundary conditions. Denoting 
inflow and outflow as x1, x0, respectively, we use 

a 

I I 
-3 -2 -I I 2 3 

XI 
Ox 

80 

FIG. 3a. A plot of the numerical solution to the inflow-outflow advection-diffusion equation (19). 
Five spectral elements, each containing seven collocation points, are used to resolve the domain 
x, = -2.5 & x < 3.0 = x s. Note that the gradient at outflow is not exactly zero as the zero-derivative 
condition is “naturally” imposed. 

9 x X0 

FIG. 3b. A plot of the error in the numerical solution to the inflow-outflow advection-diffusion 
equation (19) at two times, t = 0.5 and t = 2.5. Here E = 1 u.~,,,,,,~~, - aexaEtI. Note the very good 
accuracy achieved, even at late times when the solution is propagating out of the computational domain. 
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For this particular equation (19), the problematic downstream condition does not in 
fact appreciably influence the solution upstream when v is small, and we therefore 
consider this case. 

The solution to the wave equation (3a) and Helmholtz equation (3b) follows 
directly from the algorithms presented in Subsections 1.2 and 1.3. For the wave 
equation, only the inflow boundary condition is imposed. For the diffusive part, the 
Neumann rather than Dirichlet condition at outflow is “naturally” imposed if no 
matrix condensation is performed at outflow. 

To demonstrate the accuracy of the technique, we solve (19) with v = 0.01 on the 
interval x1 = - 2.5, x,, = 3.0 over the time interval 0 < t < 2.5. Five elements are used 
(A4 = 5), with Ni = 6 for all elements (i.e., NI = 3 1); the element domains are [-2.5, 
--I], [-l,O], [0, 11, [l, 21, [2, 31. The time step is taken to be At = 0.01. The 
numerical solution is plotted in Fig. 3a, and in Fig. 3b the error is plotted at two 
times, t = 0.5 and t = 2.5. Note the good accuracy with relatively few points. 

In Figs. 4a and 4b we present the solution and error, respectively, to this 

FIG. 4a. A plot of the numerical solution to the inflow-outflow advectiondiffusion equation (19) 
using linear finite elements with Nt = 3 1. Dispersion errors can be seen as wiggles behind the travelling 
wave. 

-3 -2 -I 0 I 2 3 
Xl ?. x0 

FIG. 4b. A plot of the error in the linear finite element numerical solution to the advectiondiffusion 
equation (19) at two times, t = 0.5 and I = 2.5. As expected, for the same number of points, the spectral 
element method is several orders-of-magnitude more accurate than the low-order finite element 
technique. 
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choose the problem of flow in an asymmetric channel expansion to demonstrate the 
viability of the spectral element technique. 

The channel geometry is shown in Fig. 5. It is assumed that the channel length 
previous to the expansion is long, and the inflow profile is therefore taken to be 
parabolic. The steady separated flow is found by integrating the time-dependent 
Navier-Stokes equations until a steady situation is obtained; the equations to be 
numerically simulated are, therefore, 

av at=vx”-v*+~v2v, v .v=o; (224 

n=p+fv.v, o=vxv; Wb) 
v=o at solid walls, 

v = (1 - y’),; at inflow (x = - 2), G-) 

av 
ax’ 0 at outflow (x = L); 

v(x, t = 0) = d(x); WV 
where n is the dynamic pressure, and o is the vorticity. Eqs. (22) are nondimen- 
sionalized with respect to the inlet channel half-width, h, and the maximum velocity 
at inflow, U, (R = U&J). The step-height is taken to be the same as the channel 
half-width, and the nondimensional length of the channel following the expansion is 
L. The inflow point is always taken to be two step-heights up from the step. Various 
initial conditions v’ were used; typically the flow everywhere was taken initially to be 
that at inflow (and zero for y < -1). Note that although only steady results are 
presented in this paper, the method described here is not only an iterative steady-state 
solver, but an accurate time-dependent scheme as well. 

The time-stepping scheme used in based on the Green’s function techniques 
developed for both spectral techniques [ 14-161 and finite element methods [ 171. 
(Note the spectral element spatial discretization does not require the particular time- 
stepping procedure described below, nor vise versa. However, these spatial and 
temporal treatments are certainly compatible, and we therefore present them in a 
unified fashion.) Before beginning the simulation, the following Stokes problem is 
solved in a preprocessing stage: 

V2&=0, z7,(xj) = sj, ; (234 

Vk = 0 at solid walls, 

Vk = 0 at intlow (x = -2), (23~) 

hvk -= 
ax 

0 at outflow (x = L); 
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where xi (p = 1,2,..., N,), represent the (numerical) grid points on the boundary 80, 
and 6,, is the Kronecker-delta symbol. From the solution (23) we construct the 
capacitance matrix 

G, = V . vj(x;). (24) 

The time-stepping procedure then consists of first solving the inhomogeneous 
problem 

-nt1 VI -vn 

At 
=~(VX”)n-~(VXco)n-‘; 

1 vZfp+'=-v . in+1 I At ” 
ft:+‘=OonLD; 

fV 
ntl 

2q1 -vIj:tl =VI 
ant1 

-vf 
At 

; 

VI 
nt1=0 at solid walls, 

v:+’ = (1 - y’)x^ at inflow (x = -2), W) 

at outflow (x = L). 

Note that no boundary conditions are imposed on +:+I. The solution is then 
constructed from vk and v: “, 

where the pi are determined from 

G,13, = -V . v; + ‘(xi), Wb) 

which is the requirement that continuity be satisfied on the domain boundary ~90. 
The scheme, as presented, has errors O(At2) + O(At/R) in time, for although the 

explicit Adams-Bashforth scheme is second-order, the backward-Euler implicit 
viscous step is first-order. The second-order Crank-Nicolson scheme could be easily 
substituted for the backward-Euler method at no cost in efficiency. (Note that, 
although (26) ensures that V . v”+’ satisfies a homogeneous equation and 
homogeneous boundary equations, there are nevertheless numerical commutation 
errors near the boundary. These have been shown to be small relative to the error 
estimate given above [ 15, 161.) The Green’s function technique (23)-(26) is a viable 
alternative to splitting methods [ 181, particularly in situations (such as 
inflow-outflow) where there is motion at the boundaries. 

We now discuss the spatial discretization. The element boundaries are shown in 
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Fig. 5, within each element, Ni and N: collocation points are used in the x and y 
directions, respectively. It is appropriate to comment here on the way in which we 
require the spectral element solution to converge. Clearly, the solution can converge 
either algebraically as M+ co with fixed Ni, Ni, or exponentially as NL, Nb + co 
with fixed A4 (h- or g-convergence, respectively); in general, we choose the latter 
path. However, the spectral element strategy should not be perceived as selecting 
extremely high-order expansions in the largest elements compatible with a given 
geometry. Rather, element boundaries are chosen to provide optimal convergence of 
low-order spectral (but high-order finite element) expansions. Indeed, the fact that 
most “well-behaved” functions (e.g., one period of a sine wave) are resolved to 
several digits by six or seven Chebyshev polynomials indicates that a well-formulated 
spectral element problem (i.e., one that is not overly global at the expense of a great 
loss in efficiency) should not require an excessive number of collocation points/ 
element. 

The nonlinear step (25a) is evaluated using collocation exactly as in the wave 
equation and the advection-diffusion equation of Section 1. For simplicity, we have 
chosen the two-dimensional analog of a- = f, a + = 1 in (11); to wit, the derivative at 
an element boundary point is taken as the average of the derivatives (at that point) 
evaluated in the elements surrounding it. This algorithm is easily implemented and 
vectorizable. 

The implicit equations to be solved, (23), (25b), (25c), are treated as the 
Helmholtz equation of Subsection 1.3. The elements are rectilinear in (x, y), and 
therefore the elemental equations can be constructed for a single element and 
appropriately scaled to represent any other element. In two dimensions, the 
Lagrangian interpolant of a variable u(x, y) is written in the ith element (of 
dimension Li by Ls) as 

ui(,$, j+) = 3 3 U;khj(fi) h;(yi), 

j=O k=O 
(27) 

where the h6 are defined in (4)-(6). For the two-dimensional Helmholtz equation 

and corresponding functional 

the elemental equations are 

C:k,m U f ,,, = Bjk,, f ;,,, , (294 

C:klm = A:,,, - 1 ‘Bjk,,,, . Wb) 
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Here 

and Jh4 , & are defined in (15). The system matrix is then constructed by the direct 
stiffness method. Note that the only boundary conditions required in (23)-(25) are 
Dirichlet (implemented by matrix condensation) and zero-derivative (natural) 
boundary conditions. 

The system matrices have been inverted using unpivotted, symmetric, banded, 
skyline Gaussian elimination. No conditioning problems were encountered. A much 
more efficient matrix-inversion procedure is currently being implemented using the 
static condensation algorithm [4), which is particularly appropriate for higher-order 
methods given the large number of internal degrees of freedom. The static conden- 
sation algorithm is amenable to both vectorization and parallel processing. 

We note one subtlety associated with the solution procedure (23)-(26); corners 
where the no-slip boundary conditions automatically imply a divergence-free velocity 
field (e.g., (-2, l), (-2, -1), (0, -2) in Fig. 5) create zero rows in the capacitance 
matrix G,. It can be shown that, corresponding to these zero rows, there are pressure 
eigenfunctions peaked at the corners in question (in fact, for a finite difference 
scheme rather than a finite element scheme these eigenfunctions are simple discrete 
delta functions). This indeterminacy, which is a result of any discretization, is 
properly alleviated by dictating the pressure at these corners, in addition to the usual 
condition of imposing the overall pressure level. 

Our treatment of the outflow boundary is far from satisfactory. On occasion, 
during the transient response, fluid entered the outflow boundary with subsequent 
instability. For the purposes of achieving a steady-state, this phenomenon was 
eliminated by imposing the fully developed Poiseuille flow pressure gradient at 
outflow rather than imposing the divergence condition (26b). Although the pressure- 
gradient condition is still relatively weak, care must be taken to make L sufficiently 
large that the phenomena of interest are not affected by the outflow treatment. 

2.2. Computed Flow Patterns 

We restrict ourselves here to laminar, two-dimensional, moderate Reynolds number 
flow (i.e., R- 50-250). There are several points on which comparisons can be made 
with previous numerical work and experiment. The position of the center of the 
separated vortex, the volume flowrate within the vortex, the point of flow reat- 
tachment, and the streamwise velocity profiles at various points downstream of the 
step are all quantities that have been measured with some accuracy. 

Our ba_sic test case (the one for which Fig. 5 is drawn) is R = 109.5, corresponding 
to the R = 73 (based on inlet mean velocity and inlet half-width) experiment 
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FIG. 6. Contours of the streamfunction for the calculated steady separated flow at R = 109.5. We 
plot here only the region “below” the step(y Q -1, and x > 0). The reattachment point is L, z 5.0. 

performed in [ 121. The simulation parameters used are Ni = 5, A$ = 6, for all 
elements. In general, for R 2 100, it is found experimentally that the normalized recir- 
culating volume flowrate in the vortex (i.e., the minimum of the streamfunction 
assuming the lower and upper walls are at w = 0 and w = 1, respectively) is approx- 
imately -0.023, and that the streamfunction attains this minimum at x,/L, = 0.3, 
y, = -1.4, where L, is the nondimensionalized reattachment length. Numerical work 
using upwind differencing [ 121 agrees with the experimental data. Using the 
numerical methods discussed in Subsection 2.1, we find that, at R = 109.5, the 
streamfunction minimum is -0.021, and that this minimum is attained (at the 
“center” of the vortex) at x,/L, = 0.32, ym = -1.4. 

To find the reattachment point, we plot streamfunction contours in Fig. 6. The 
value of L, is seen to be ~5.0. This figure is slightly larger than the experimental 
value, but in good agreement with the value obtained using finite differences [ 121. In 
Fig. 7 we plot the streamwise velocity profiles at several locations downstream of the 
step. The agreement with experiment is good. 

FIG. 7. Streamwise velocity profiles of the calculated steady separated flow at R = 109.5. Although 
quantitative comparisons are ditIicult, the calculated profiles appear to be very similar to the 
experimental curves in [ 121. 
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FIG. 8. A plot of the normalized x position of the vortex center, x,/L,, as a function of Reynolds 
number. Invariance in reattachment coordinates is observed for suffkiently large Reynolds number. 

As the Reynolds number is varied from our base calculation of R = 109.5, the 
simulations continue to agree with previous work on the vortex location and strength, 
as well as on streamline contours and velocity profiles. As in [ 121, the vortex region 
is found to be Reynolds-number invariant when appropriately scaled in the x 
direction with the reattachment length. In Fig. 8 we plot the location of the stream- 
function minimum (normalized with respect to reattachment length) as a function of 
the Reynolds number. In Fig. 9 the variation of the recirculating volume flowrate 

0 
0 

00 I I I I I I 
0 50 100 150 200 250 300 

R 

FIG. 9. A plot of the volume flow rate, v,,,, as a function of Reynolds number. As previously 
determined [ 121, the flowrate in the vortex is insensitive to viscosity for “high” Reynolds number flow 
that is maintained two-dimensional. 
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with Reynolds number is shown. Note that as the Reynolds number increases, L (the 
computational domain length) and the resolution (Ni,ZVL) are also increased; the 
results presented are converged in all these quantities. At R = 250, IV: = 6, A$, = 6, 
and L = 15. 

The results for the reattachment length as a function of Reynolds number are 
plotted in Fig. 10. Although in agreement with previous numerical work, we predict 
reattachment lengths significantly larger than those found in the experiments of [ 121. 
This discrepancy, which has been reported in other numerical studies [ 13, 191, is 
generally attributed to insufficient entrance length in the experimental apparatus and, 
hence, not fully developed inlet profiles. The slight difference in the spectral element 
and upwind [ 121 predictions at R = 250 is probably due to numerical diffusion in the 
latter scheme. 

In order to determine the validity of the spectral element method in a situation 
where accord between numerical and experimental results has been previously 
established, we compare in Table I the spectral element predictions for L, for a 1 : 2 
channel expansion with the experimental and numerical results of [ 131. Here the 
Reynolds number is based on maximum inlet velocity and full inlet width (which is 
the same as step height). The agreement is seen to be good. 

Although the spectral element method requires many fewer degrees-of-freedom than 
low-order methods (e.g., [ 12, 131) to simulate step flow, the problem is unfortunately 
not ideal for determining the resolution properties of a numerical scheme. In 
particular, the large reattachment length at high Reynolds numbers results in a 
boundary-layer scaling and, consequently, the numerical diffusion due to low-order 
methods (e.g., upwinding) is greatly reduced. 

OJi 
0 50 100 150 200 250 300 

R 

FIG. 10. A plot of the reattachment length of the flow versus Reynolds number. Our results (0) are 
in good agreement with previous numerical calculations [12] (+). Agreement with experiment is good 
except when insuffkient entrance length results in experimental inlet profiles that are not fully developed. 
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TABLE I 

Comparison of Spectral Element Predictions of Reattachment Length 
for 1 : 2 Channel Expansion with Experiment [ 131 

R L, (Spectral Element) 

15 2.9 
225 6.8 

L, (Numerical/Experimental [ 131) 

3.0 
6.7 

The major limitations of the spectral element method as presented in this paper are 
due to ineffkiency of the matrix inversions, and restriction to rectilinear elements. 
These deficiencies are currently being addressed, the former by implementation of 
static condensation, the latter by construction of sub- and isoparametric spectral 
elements. Problems being addressed with this more general formulation include 
oscillatory flow in grooves, and three-dimensional spatial stability and transition in 
general curved channels and boundary layers. The results of these calculations will be 
reported in a future paper. 
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